
Post 21 Raspberry Pi Foyer Slideshow

Contents
	 OS Maintenance and Notes

	 Software and Scripts

	 Parameters and Pins

	 Power Button

	 LED Power Light

	 Fan Control

OS Maintenance
To update your system, including the bootloader:

	 sudo apt update

	 sudo apt full-upgrade

	 sudo apt autoremove

	 sudo reboot

Notes

Editing System Files: Sudo -e NAME

Software and Scripts
File Structure

	 Slides: home/pi/Pictures/SPSlides

	 Special Slides: /home/pi/Pictures/Add in February (Black History Month)

	 Old Slide Shows: /home/pi/Pictures/Post Spinners (as storage permits)

Software that needs to be installed

	 FEH

Desktop Configuration File
	 Slideshow - Used to manually start the slideshow from the desktop

	 	 [Desktop Entry]

	 	 Name=Slideshow

	 	 Comment=THis is to run home/pi/runslideshow.sh

	 	 Icon=/usr/share/pixmaps/openbox.xpm

	 	 Exec=/home/pi/runslideshow.sh

	 	 Type=Application

	 	 Encoding=UTF-8

	 	 Terminal=false

	 	 Categories=None;

Slideshow Shell Script (.sh)
	 /home/pi/runslideshow.sh

	 	 #!/bin/sh

	 	 cd /home/pi/Pictures/SPSlides

	 	 feh -Z -F -D 20 --hide-pointer --auto-rotate

	 	 # -Z --auto-zoom Zoom pictures to screen size in fullscreen / fixed geometry mode.

	 	 # -F --fullscreen

	 	 # -D --slideshow-delay float seconds

Autostart Mechanism
	 /home/pi/.config/lxsession/LXDE-pi/autostart (plain text document)

	 	 @lxpanel --profile LXDE-pi

	 	 @pcmanfm --desktop --profile LXDE-pi

	 	 #@xscreensaver -no-splashpoint-rpi

	 	 @xset s noblank

	 	 @xset s off

	 	 @xset -dpms

	 	 @/bin/sh /home/pi/runslideshow.sh

Disable Screen Blanking
	 There is no powersave or sleep mode. Screen blanking turns the screen black after 10 min… nothing else.

	 To disable, add the following 3 lines to autostart:

	 	 nano /home/pi/.config/lxsession/LXDE-pi/autostart

	 	 	 @xset s noblank

	 	 	 @xset s off

	 	 	 @xset -dpms

	 	 -OR-

	 	 Install xscreensaver and set mode to [no blanking]

Parameters and Pins
Raspberry pi Configuration

	 Hostname raspberrypi

	 User pi

	 password: Mighty21!

Preferences / Raspberry Pi Configuration

	 Display/Disable Screen Blanking

	 Interfaces Enable SSH and VNC

	 Set Timezone, etc.

Appearance Settings

	 Uncheck Desktop Wastebasket and Mounted Disks

	 Install Legion Desktop Picture

Pins
Fan

	 Red Pin 2 / Black Pin 9 / Yellow Pin 11

Power Up/Down Switch:

	 Pins 5 and 6 (Polarity does not matter)

Power LED

	 Pin 8 Red (TXD)

	 Pin 14 Black (GND)

�

Power Button
	 https://howchoo.com/g/mwnlytk3zmm/how-to-add-a-power-button-to-your-raspberry-pi

Create the script: sudo nano listen-for-shutdown.py
Paste the following code into that file
++

#!/usr/bin/env python

import RPi.GPIO as GPIO

import subprocess

GPIO.setmode(GPIO.BCM)

GPIO.setup(3, GPIO.IN, pull_up_down=GPIO.PUD_UP)

GPIO.wait_for_edge(3, GPIO.FALLING)

subprocess.call(['shutdown', '-h', 'now'], shell=False)

++

Place the script in /usr/local/bin and make it executable:
	 sudo mv listen-for-shutdown.py /usr/local/bin/

	 sudo chmod +x /usr/local/bin/listen-for-shutdown.py

A script called listen-for-shutdown.sh that will start/stop our service.
	 sudo nano listen-for-shutdown.sh

Enter the following code in that file and save it:
++

#! /bin/sh

BEGIN INIT INFO

Provides: listen-for-shutdown.py

Required-Start: $remote_fs $syslog

Required-Stop: $remote_fs $syslog

Default-Start: 2 3 4 5

Default-Stop: 0 1 6

END INIT INFO

If you want a command to always run, put it here

Carry out specific functions when asked to by the system

case "$1" in

 start)

 echo "Starting listen-for-shutdown.py"

 /usr/local/bin/listen-for-shutdown.py &

 ;;

 stop)

 echo "Stopping listen-for-shutdown.py"

 pkill -f /usr/local/bin/listen-for-shutdown.py

 ;;

 *)

 echo "Usage: /etc/init.d/listen-for-shutdown.sh {start|stop}"

 exit 1

 ;;

esac

exit 0

++

Place this file in /etc/init.d and make it executable.
	 sudo mv listen-for-shutdown.sh /etc/init.d/

	 sudo chmod +x /etc/init.d/listen-for-shutdown.sh

Register the script to run on boot.
	 sudo update-rc.d listen-for-shutdown.sh defaults

Start it with:
	 sudo /etc/init.d/listen-for-shutdown.sh start 

LED Power Light
adding Pi LED status indicators
https://howchoo.com/g/ytzjyzy4m2e/build-a-simple-raspberry-pi-led-power-status-indicator

The LED Is connected to your Pi's TxD pin, which monitors the serial console. The LED will flicker a tad while
booting, stay solid while your Pi is running, and turn off when it's safe to remove power.

Pros: Simplicity. No code is needed and it just sort of works. Also, this is a great foray into the hardware portion
of your Pi.

Cons: Limited to providing information about when the Pi is on or off—a very binary solution.

Enable the GPIO serial port
Newer versions of Raspbian (May 2016 and later) have the GPIO serial port disabled by default; the end result is
your LED will not light up! Luckily, enabling it is super easy.

Edit your /boot/config.txt file and add the following line:
	 enable_uart=1

You can edit this file by connecting to your Pi via SSH or by putting the SD card into your computer and editing
the file directly. This file is accessible from the SD card. 

https://howchoo.com/g/ytzjyzy4m2e/build-a-simple-raspberry-pi-led-power-status-indicator
https://howchoo.com/g/mgi3mdnlnjq/how-to-log-in-to-a-raspberry-pi-via-ssh

Post 21 Raspberry Pi 4B Fan Control
	 https://howchoo.com/g/ote2mjkzzta/control-raspberry-pi-fan-temperature-python

Intermittent Fan (based on temperature)
To make the fan function run intermittently as well, I used the bash script shown above, set up to run via cron
once every minute. When triggered, it uses vcgencmd measure_temp to get the temperature of the Raspberry
Pi’s processor. It then compares this temperature using an if/then/else statement to either turn the fan on with
the line gpio -g write 3 1 or off with gpio -g write 3 0. It’s not the most responsive solution, able to turn on or off
only once per minute, but it’s much simpler than anything else I’ve seen so far program-wise.

To directly power the fan itself I used a 2N2222 NPN transistor through one of the Pi’s 5v pins. Here GPIO pin 3
is fed to the transistor’s base, allowing current to flow through the fan, then through the transistor’s collector and
emitter, and finally to ground. A resistor is used between the GPIO and base to limit the current output [to the
transistor]. I also added a flyback diode to the design to account for voltage spikes when the fan is switched off,
though it’s optional, and isn’t actually used in my current setup.

A Simple PCB

� � � 	
	 (Transistor numbering (1,2,3) in the above sketch is unusual, a limitation of the RPi fzbz I used)

From top to bottom in the picture and diagram it should be:

	 Q1-1 Collector

	 Q1-2 Base

	 Q1-3 Emitter

D1 1N4001 Diode - Flyback Diode - Protection from BEMF when fan is turned off

R1 670Ω Resistor - Protect Transistor

Q1 2N3904 Transistor - Switch

1N4001 Diode Features
• Average forward current is 1A

• Non-repetitive Peak current is 30A

• Reverse current is 5uA.

• RMS reverse voltage is 35V

• Peak repetitive Reverse voltage is 50V

2N3904 SMALL SIGNAL NPN TRANSISTOR
SILICON EPITAXIAL PLANAR NPN TRANSISTOR

TO-92 PACKAGE SUITABLE FOR THROUGH-HOLE PCB ASSEMBLY

THE PNP COMPLEMENTARY TYPE IS 2N3906

APPLICATIONS

WELL SUITABLE FOR TV AND HOME APPLIANCE EQUIPMENT

SMALL LOAD SWITCH TRANSISTOR WITH HIGH GAIN AND LOW SATURATION VOLTAGE

ABSOLUTE MAXIMUM RATINGS

Symbol	 Parameter	 	 	 Value	 	 Unit

VCBO	 Collector-Base Voltage (IE = 0)	 60	 	 V

VCEO	 Collector-Emitter Voltage (IB = 0)	 40	 	 V

VEBO	 Emitter-Base Voltage (IC = 0)	 6	 	 V

IC	 Collector Current		 	 200	 	 mA

Ptot	 o Total Dissipation at TC = 25 C	 625	 	 mW

Tstg	 Storage Temperature	 	 -65 to 150	 oC

Tj	 Max. Operating Junction Temp	 150	 	 oC

https://en.wikipedia.org/wiki/Flyback_diode

https://howchoo.com/g/ote2mjkzzta/control-raspberry-pi-fan-temperature-python

Write the fan controller code
	 Continuously monitors the core temperature and turns on the fan when the temperature reaches a certain
threshold.

To create this file, run:
nano fancontrol.py

Add the following to the file, save, and exit:
++

#!/usr/bin/env python3

import subprocess

import time

from gpiozero import OutputDevice

ON_THRESHOLD = 65 # (degrees Celsius) Fan kicks on at this temperature.

OFF_THRESHOLD = 55 # (degress Celsius) Fan shuts off at this temperature.

SLEEP_INTERVAL = 5 # (seconds) How often we check the core temperature.

GPIO_PIN = 17 # Which GPIO pin you're using to control the fan.

def get_temp():

 """Get the core temperature.

 Run a shell script to get the core temp and parse the output.

 Raises:

 RuntimeError: if response cannot be parsed.

 Returns:

 float: The core temperature in degrees Celsius.

 """

 output = subprocess.run(['vcgencmd', 'measure_temp'], capture_output=True)

 temp_str = output.stdout.decode()

 try:

 return float(temp_str.split('=')[1].split('\'')[0])

 except (IndexError, ValueError):

 raise RuntimeError('Could not parse temperature output.')

if __name__ == '__main__':

 # Validate the on and off thresholds

 if OFF_THRESHOLD >= ON_THRESHOLD:

 raise RuntimeError('OFF_THRESHOLD must be less than ON_THRESHOLD')

 fan = OutputDevice(GPIO_PIN)

 while True:

 temp = get_temp()

 # Start the fan if the temperature has reached the limit and the fan

 # isn't already running.

 # NOTE: `fan.value` returns 1 for "on" and 0 for "off"

 if temp > ON_THRESHOLD and not fan.value:

 fan.on()

 # Stop the fan if the fan is running and the temperature has dropped

 # to 10 degrees below the limit.

 elif fan.value and temp < OFF_THRESHOLD:

 fan.off()

 time.sleep(SLEEP_INTERVAL)

++

Move the script to /usr/local/bin, and make it executable.
	 sudo mv fancontrol.py /usr/local/bin/

	 sudo chmod +x /usr/local/bin/fancontrol.py

https://howchoo.com/g/ote2mjkzzta/control-raspberry-pi-fan-temperature-python

Execute the fan controller code on boot
	 Create a shell script that will execute on boot and launch our script.

Create a file called fancontrol.sh and add the following:
	 nano fancontrol.sh

++

#! /bin/sh

BEGIN INIT INFO

Provides: fancontrol.py

Required-Start: $remote_fs $syslog

Required-Stop: $remote_fs $syslog

Default-Start: 2 3 4 5

Default-Stop: 0 1 6

END INIT INFO

Carry out specific functions when asked to by the system

case "$1" in

 start)

 echo "Starting fancontrol.py"

 /usr/local/bin/fancontrol.py &

 ;;

 stop)

 echo "Stopping fancontrol.py"

 pkill -f /usr/local/bin/fancontrol.py

 ;;

 *)

 echo "Usage: /etc/init.d/fancontrol.sh {start|stop}"

 exit 1

 ;;

esac

exit 0

++

Move this file to /etc/init.d, and make it executable:
	 sudo mv fancontrol.sh /etc/init.d/

	 sudo chmod +x /etc/init.d/fancontrol.sh

Register the script to run on boot:
	 sudo update-rc.d fancontrol.sh defaults

Either restart your machine, or kick this off manually since it won't already be running:
	 sudo reboot or sudo /etc/init.d/fancontrol.sh start

=======================================
Further Explanations:
https://www.embedded-computing.com/guest-blogs/raspberry-pi-cooling-fan-control-with-bash-scripting

=======================================
Summary of Commands: Copied from Terminal screen

pi@Post21RPi:~ $ sudo nano listen-for-shutdown.py

pi@Post21RPi:~ $ sudo mv listen-for-shutdown.py /usr/local/bin/

pi@Post21RPi:~ $ sudo chmod +x /usr/local/bin/listen-for-shutdown.py

pi@Post21RPi:~ $ sudo nano listen-for-shutdown.sh

pi@Post21RPi:~ $ sudo mv listen-for-shutdown.sh /etc/init.d/

pi@Post21RPi:~ $ sudo chmod +x /etc/init.d/listen-for-shutdown.sh

pi@Post21RPi:~ $ sudo update-rc.d listen-for-shutdown.sh defaults

pi@Post21RPi:~ $ nano fancontrol.py

pi@Post21RPi:~ $ sudo mv fancontrol.py /usr/local/bin/

pi@Post21RPi:~ $ sudo chmod +x /usr/local/bin/fancontrol.py

pi@Post21RPi:~ $ nano fancontrol.sh

pi@Post21RPi:~ $ sudo mv fancontrol.sh /etc/init.d/

pi@Post21RPi:~ $ sudo chmod +x /etc/init.d/fancontrol.sh

pi@Post21RPi:~ $ sudo update-rc.d fancontrol.sh defaults

pi@Post21RPi:~ $ sudo reboot

https://www.embedded-computing.com/guest-blogs/raspberry-pi-cooling-fan-control-with-bash-scripting

